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Wire sculptures are important in both industrial applications and daily life.

We introduce a novel fabrication strategy for wire sculptures with complex

geometries by tuning the target shape to a collision-free shape for the wire-

bending machine and then bending it back to the target by a human. The

key challenge lies in tuning the least number of bending points, which is

formulated as an "Optimizing Wire Reconfiguration" problem. We first fit

the input target wire with consecutive line segments and circular segments

to ensure the bending manufacturing constraints for each segment, then

generate tuned wire through a bilevel optimization. This involves selecting

the bending points at the upper level with a beam search strategy and

determining the specifically tuned angles at the lower level. We perform

a thorough physical evaluation using a DIY wire-bending machine. The

results show the effectiveness of our proposed approach in realizing a wide

range of intricate and complex wire sculptures.
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A STRIKE BENDING AND INTERPOLATED BENDING
Two strategies, strike bending and interpolated bending, are em-

ployed when manufacturing a circular segment.

The circular segment produced by interpolated bending is faster

than strike bending but has a limited minimum radius 𝑅𝑚𝑖𝑛 . If

the radius of circular segment is less than 𝑅𝑚𝑖𝑛 , the bending angle

becomes very large. At this point, when the feeder continues to drive

the wire forward, the bending pin blocks the wire forward with

significant resistance, resulting in bending failure. Therefore, in this

case, strike bending is more advantageous to form circular segments.

Although strike bending uses multiple incremental flexion bending

operations that require additional time, it can avoid the limitation

of 𝑅𝑚𝑖𝑛 .

B MANUFACTURING CONSTRAINTS DETAILS
This section elucidates the details of the three manufacturing con-

straints.

Minimal length constraint. For each bending operation, the wire

must contact the bending pin in order to be bent. This requirement

is defined as the Minimal length constraint. The distance between

the bending pin and the wire outlet, 𝐿𝑚𝑖𝑛 , is the minimal length

and is a constant constraint. For our DIY machine 𝐿𝑚𝑖𝑛 has been

measured to be 7 mm.

Bending angle range constraint. For our DIY bending machine, the

bending angle is constrained by the rotation limit of the bending

pin, which is synchronized with the rotation of the bending head.

Due to the spring-back effect of metal materials, the maximum

bending angle is smaller than the maximum rotation angle of the

bending pin. The maximum bending angle, 𝛼𝑚𝑎𝑥 , defines the range

of the bending angle as [-𝛼𝑚𝑎𝑥 , 𝛼𝑚𝑎𝑥 ]. For our case, 𝛼𝑚𝑎𝑥 has been

measured to be 110°.
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G1 line segment constraint. Our shape consists of line segments

and circular segments, with an angle 𝛼𝑙 between them. When em-

ploying interpolated bending to form a circular segment, we need to

rotate the bending pin to a specific angle 𝛼𝑐 and fix it in place. Sub-

sequently, we feed the wire to the corresponding length. However,

due to the distance between the outlet and the bending pin, before

forming a circular segment, the wire must be fed to make contact

with the bending pin. Therefore, there must be a line segment with

a length of at least 𝐿𝑚𝑖𝑛 before each circular segments. Further-

more, the line segment preceding each circular segment must be

G1 continuous so that circular segment can be manufactured. This

occurs because the shape formation position of circular segment is

at the outlet as the bending pin rotates against the wire. When the

line segment before circular segment already contacts the bending

pin, 𝛼𝑙 cannot be changed anymore. Thus, a circular segment is

bending fabricable only when it has a G1 continuous line segment

in preceding.

C SEGMENT FITTING
We use three different fitting strategies to fit segments.

C.1 Line segment fitting (LSF)
In the fitting process, line segment 𝑠 is fitted by connecting the first

point 𝑝𝑎 and the last point 𝑝𝑏+1 of all the merged bending segments

{𝑠𝑎, 𝑠𝑎+1, ..., 𝑠𝑏 }.

C.2 Circular segment fitting without constraints (CSF)
In the fitting process, circular segment 𝑠 is obtained using least

squares fitting from the points {𝑝𝑎, 𝑝𝑎+1, ..., 𝑝𝑏 , 𝑝𝑏+1} of all themerged

bending segments {𝑠𝑎, 𝑠𝑎+1, ..., 𝑠𝑏 }. Note that 𝑝𝑎 and 𝑝𝑏+1 must be

in the fitted circular segment. The specific process is as follows.

We first fit the points {𝑝𝑎, 𝑝𝑎+1, ..., 𝑝𝑏 , 𝑝𝑏+1} to a plane using

CGAL [Fabri and Pion 2009]. Next, project all points and the plane

onto a two-dimensional plane for circular fitting. We compute a

series of radii and center of the circles, which are formed by each

point 𝑝𝑘 in {𝑝𝑎+1, ..., 𝑝𝑏 }, in conjunction with 𝑝𝑎 and 𝑝𝑏+1. Then a

binary search iteration is used to find the fitted circular segment

with the minimal error, defined as the sum of the Euclidean distance

from {𝑝𝑎+1, ..., 𝑝𝑏 } to the fitted circle. Finally, the two-dimensional

circular segment is projected back into the three-dimensional space

to obtain a well-fitted circular segment 𝑠 .

C.3 Circular segment fitting with constraints (CSFWC)
Due to the G1 line segment constraint outlined in Appendix B, the

fitted circular segment in Subsection C.2 is not bending fabricable.

To satisfy the manufacturing constraint, we re-fit circular segment

¤𝑠𝑖 after the graph cut to generate a pair of (𝑠′
𝑖
, 𝑠′
𝑖
), and they are two

fitted segments of ¤𝑠𝑖 , which ensures the G1 line segment constraint.

Similarly to Subsection C.2, we use the least squares fitting to fit

the points {𝑝𝑎, 𝑝𝑎+1, ..., 𝑝𝑏 , 𝑝𝑏+1} of ¤𝑠𝑖 . Only when calculating the

radius and center of a circle are different, where we will ensure that

there is a G1 continuous line segment before circular segment. For

each 𝑝𝑖 in {𝑝𝑎+1, ..., 𝑝𝑏 } combined with 𝑝𝑎 and 𝑝𝑏+1, we fit a (𝑠′𝑖 , 𝑠
′
𝑖
).

The direction of 𝑠′
𝑖
coincides with the tangential direction at the

starting point 𝑝𝑡 of 𝑠
′
𝑖
. The key to solving the problem is to find the

(a) (b)

Fig. 1. Demonstration of FAO. (a) The colored shape is the state be-
fore bending 𝛼 ′

6
, the gray shape is the state after bending 𝛼 ′

6
, and the

green shape is the state where bending angle 𝛼̃6

𝑚𝑎𝑥 (𝛼2

𝑚𝑎𝑥 ) without col-
lision. 𝛼 ′

6
∉ [0, 𝛼̃6

𝑚𝑎𝑥 ], collision will occur. (b) indicates the computed
{𝛼1

𝑚𝑎𝑥 , 𝛼
2

𝑚𝑎𝑥 , 𝛼
3

𝑚𝑎𝑥 , 𝛼
4

𝑚𝑎𝑥 , 𝛼
5

𝑚𝑎𝑥 , 𝛼
6

𝑚𝑎𝑥 } (Green arrow). The minimum
𝛼𝑖
𝑚𝑎𝑥 is 𝛼2

𝑚𝑎𝑥 .

intersection point between a circle centered on 𝑝𝑎 with a radius of

𝐿𝑚𝑖𝑛 and a circle that satisfies G1 continuity and passes through

the points 𝑝𝑖 and 𝑝𝑏+1. One of the intersection points is the 𝑝𝑡 .

In addition, we will also fit ¤𝑠𝑖 to a line segment 𝑠′
𝑖
by connecting

the first point and the last point of ¤𝑠𝑖 .

D FEASIBLE ANGLE OPERATOR
As shown in Figure 1, the feasible range of 𝑝′

𝑖
includes all the rotating

angles of 𝛼 ′
𝑖
that do not lead to any collision between the preced-

ing segments {𝑠∗
0
, 𝑠∗

1
, ..., 𝑠∗

𝑖−1
} of 𝑝′

𝑖
and the wire-bending machine,

where each bending segment 𝑠∗
𝑗
produces a restrained feasible range

to 𝛼 ′
𝑖
for collision-free. Moreover, we observe that {𝑠∗

0
, 𝑠∗

1
, ..., 𝑠∗

𝑖−1
}

shares the same rotation transform as the bending pin, whose rota-

tion realizes the bend angle 𝛼 ′
𝑖
of 𝑝′

𝑖
. Hence, the feasible range of

𝑝′
𝑖
is indeed the intersection of the feasible ranges of each bending

segment 𝑠∗
𝑗
, whose maximal feasible angle is:

𝛼
𝑗
𝑚𝑎𝑥 = min{∠(𝑣𝑝𝑜 , 𝑣𝑤𝑜 ) − arcsin( 0.5𝑑

𝑣
𝑝
𝑜

), 𝑝 ∈ 𝑠∗𝑗 } (1)

where 𝑑 is the diameter of the wire tube, 𝑝 is any points of 𝑠∗
𝑗
,

𝑣
𝑝
𝑜 is a vector from 𝑝 to 𝑝𝑜 , 𝑣

𝑝
𝑜 = 𝑝 − 𝑝𝑜 , 𝑝𝑜 is the pin’s rotation

center that aligns with the outlet center, 𝑣𝑤𝑜 is a direction vector

of the wire outlet, ∠(𝑣𝑝𝑜 , 𝑣𝑤𝑜 ) is the angle between vectors, 𝑣
𝑝
𝑜 is the

length of 𝑣
𝑝
𝑜 . Finally, the feasible range of 𝑝

′
𝑖
is [0, 𝛼𝑖𝑚𝑎𝑥 ], 𝛼𝑖𝑚𝑎𝑥 =

min{𝛼1

𝑚𝑎𝑥 , 𝛼
2

𝑚𝑎𝑥 , ..., 𝛼
𝑖−1

𝑚𝑎𝑥 , 𝛼
𝑖
𝑚𝑎𝑥 }.

E CRO OPTIMIZATION
For CRO in bilevel tuned wire optimization, we attempt to use non-

linear continuous optimization methods to tune the bending angles

{𝛼∗
1
, ..., 𝛼∗

𝑖
} of tuned points in {𝑝′

1
, 𝑝′

2
, ..., 𝑝′

𝑖
} with ipopt [Waechter

et al. 2002]. Here is the formulation:

min

{𝛼∗
1
,𝛼∗

2
,...,𝛼∗𝑘 }

(𝛼∗𝑖 − 𝛼
′
𝑖 )

2

𝑠 .𝑡 . 𝛼𝑖𝑚𝑎𝑥 = min{∠(𝑣𝑝𝑜 , 𝑣𝑤𝑜 ) − arcsin( 0.5𝑑
𝑣
𝑝
𝑜

), 𝑝 ∈ 𝑠∗
𝑖
}

𝛼∗
𝑖
> 𝛼𝑖𝑚𝑎𝑥 , 𝑗 = 0...𝑖

(2)
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Fig. 2. Comparison of the number of tuned points of our beam search
method (left figure of eachmodel) and the greedy-basedmethod (right figure
of each model). Our method can obviously reduce the manual operation
cost. Our algorithm takes 22.11 seconds on average, and the greedy-based
method takes 13.57 seconds on average.

where 𝑖 is the last angle when calling CRO, 𝛼𝑖𝑚𝑎𝑥 is calculated in the

feasible angle operator (FAO), and {𝛼∗
1
, 𝛼∗

2
, ..., 𝛼∗

𝑘
} are tuned points

in the current state.

The primary issue with this process is its slowness, 40% - 60%

slower than the heuristic-based searching strategy described in the

main text. The reason for this is as follows: This optimization process

requires multiple iterations to achieve the optimal goal. During each

iteration, multiple derivatives must be computed for each point in

that state. We must also consider that all preceding segments can

be bent without collisions with the changed tuned points values.

In other words, we need to consider all the historical states before

the current collision. After a certain number of iterations, a set of

feasible solutions may be found, but optimization continues in an

attempt to further minimize the optimization objective. This results

in many iterations being unnecessary. But limiting the number of

iterations to reduce time may lead to a wrong solution. Based on

the reason, we use the heuristic-based searching strategy to tune

these tuned points.

However, we must acknowledge that although this method is

relatively slow in current testing, it excels over the method in our

main text in certain extreme cases where there are numerous tuned

points and almost all of tuned points need to be changed simultane-

ously to avoid collisions. Nevertheless, such situations are rare in

wire art.

F GREEDY VS. BEAM SEARCH
Being the initial algorithm for bending a single wire that incorpo-

rates the two-stages-bending strategy, no current methods address

the exact OWR problem that we do. We take the greedy-based

method proposed as a benchmark for comparison against our beam

search strategy. As indicated in Figure 2, the beam search strategy

results in fewer tuned points, albeit with a marginally increased

execution time, thus demonstrating its efficiency.

G OVERALL ALGORITHM LOOP
In candidate nodes generation of beam search, if all nodes in T are

abandoned, it means that a collision-free solution cannot be found

at the moment. To solve this situation, we need to start from fitting

again.

We divide the initial input, a series of line segments, into smaller

segments. As the number of initial segments increases, the number

Fig. 3. Illustration the impact of minimum manufacturing length 𝐿𝑚𝑖𝑛 on
fitting errors and the number of tuned points. As 𝐿𝑚𝑖𝑛 increases, the fitting
error continues to increase, and the overall number of tuned points decreases.
Due to the requirement for a specific distance between the bending pin and
the wire outlet of the machine, we ultimately select a relatively optimal
value 7 mm to 𝐿𝑚𝑖𝑛 .

of candidate fabricable segments also increases. When performing

the beam search again, there may be an increase in the bending

points that become tuned points, thus having a greater chance of

finding collision-free solutions. If not found, repeat the loop until a

solution is found.

H SETTING TUNED SCORE FOR BENDING POINTS
We give each bending point 𝑝′

𝑖
a weight called tuned score to help

determine tuned points from {𝑝′
1
, ..., 𝑝′𝑚} in the subsequent pro-

cess. Inspired by [Lira et al. 2018], we first traverse each bending

segment 𝑠′
𝑖
, performing the forward-and-backward searching to con-

nect adjacent bending segments, getting the longest non-collision

part {𝑠𝑏′
1
, ..., 𝑠𝑏′𝑚 } ofW′, and recording bending points 𝑝′

𝑖
at both

ends. The 𝑝′
𝑖
is considered to be what causes the collision. Then we

count the occurrences of each 𝑝′
𝑖
appearing at the ends and denote

this count as L(𝑖). The higher the value of L(𝑖), the more likely 𝑝′
𝑖

is designated as a tuned point. The formulation is as follows:

L(𝑖) =
∑︁
𝑗∈𝑚

𝑇 (𝑖, 𝑠𝑏′𝑗 ), 𝑇 (𝑖, 𝑠𝑏′𝑗 ) =
{

1, 𝑖 𝑓 𝑝′
𝑖
𝑖𝑠 𝑒𝑛𝑑 𝑜 𝑓 𝑠𝑏′

𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3)

I OPTIMIZING WIRE RECONFIGURATION RESULTS
Weperform various experiments to evaluate our algorithm. Different

hyperparameters and setting are assessed below.

Fitting error threshold. We use the fitting error threshold 𝜖 as the

termination condition in the candidate fabricable segments gen-

eration step. Consequently, it is ensured that the fitting errors of

the results during the graph cut remain below the 𝜖 . However, the

fitting error tends to increase due to the re-fitting phase, which will

ignore 𝜖 to meet manufacturing constraints. As shown in Figure 13

(paper), there exists a non-linear correlation among various 𝜖 and

their corresponding fitting errors across eight different shapes, with

the minimum error not being consistent across all shapes. Typically,

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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(a) (b) (c)

Fig. 4. Illustration of the wire size experiment. The blue shape is the input
model and the green-yellow shape (line segment: Green, circular segment:
Yellow) is the fitted model. The red dots are the tuned points. The bounding
box dimensions of the small bull model (a) are 118.90 mm by 102.34 mm.
The bounding box dimensions of the medium-sized bull model (b) are 297.25
mm by 255.84 mm. The bounding box dimensions of the big bull model (c)
are 594.494 mm by 511.68 mm.

an increase in 𝜖 initially decreases the fitting error and then begins

to increase. The reason is that small 𝜖 leads to many short segments

that require extensive refitting, increasing the error. In contrast, a

large 𝜖 inherently has a significant error. We choose 𝜖 to be 0.6 mm

based on the results of all examples.

Two types of fitting segments. In our final results (Figure 9 in

paper), two types of fitting segments are utilized to fit the input wire

W, with line segments generated by flexion bending and circular

segments generated by interpolated bending and strike bending.

Our technique for the OWR problem is general enough to employ

either line segments or circular segments to fitW separately. In

Figure 12 (paper), we compare the fitting errors of the combined

strategy (c) with pure line segments (a) and pure circular segments

(b). It is observed that the combined strategy results in significantly

lower average fitting errors compared to the individual line segment

and circular segment strategy, as illustrated in 0.682 mm vs. 0.908

mm vs. 0.499 mm, while the number of tuned points is almost the

same (7 vs. 8 vs. 7).

Minimum segment length. As illustrated in Figure 3, an increase

in the minimum length of line segment 𝐿𝑚𝑖𝑛 leads to a rise in the

fitting error and a decrease in the number of tuned point. The

quantity of tuned points does not show significant variations as

𝐿𝑚𝑖𝑛 values ranging from 1 mm to 30 mm. A substantial disparity

in fitting errors is observed as a result of varying 𝐿𝑚𝑖𝑛 . Setting 𝐿𝑚𝑖𝑛

to approximately 10 mm results in a significant escalation in the

fitting error across all three shapes. Despite the fact that the fitting

errors are remarkably minor when 𝐿𝑚𝑖𝑛 is less than 5 mm, our DIY

wire-bending machine constraints necessitate setting 𝐿𝑚𝑖𝑛 at 7 mm

in our experiments.

Wire size. The wire size is an important hyperparameter in our

algorithm. Figure 4 illustrates the segment-bendable wireW′ and
the tuned wireW∗ of the bull model with varying wire sizes, while

adhering to default manufacturing constraints (such as G1 line

segment constraint) et al.With thewire size increasing, it is observed

that the average fitting error decreases (0.900 mm vs. 0.816 mm vs.

0.499 mm), the number of bending segments increases (48 vs. 80

vs. 107), the number of tuned points almost the same (6 vs. 8 vs. 7).

Furthermore, our algorithmwill output more circular segments with

a larger wire size while the same size one does not have circular

segment.

Bending order. A wireW can be produced starting from either

endpoint in the forward or reverse bending orders. As shown in Fig-

ure 5, there is a slight variation in the number of tuned points

produced when tuned wire is created from both orders of the Bird
and Cat models. Typically, when the initial bending sequence of a

shape bends inward continuously, it tends to lead to more collisions,

resulting in more tuned points. Conversely, if the bending sequence

expands outward, it generally reduces the likelihood of collisions,

such as the spiral shape, if we start the bending from the center

outward.

Scalability. For geometrical structures in Figure 9 (paper), our

algorithm effectively produces the tuned wire with an appropriate

count of tuned points. As we explore more complex geometric struc-

tures, our approach still shows its ability of scalability. In Figure 15

(paper), we apply the space-filling curve result developed by [Zhao

et al. 2016] to illustrate the scalability of our algorithm in manag-

ing highly complex structures. The Three-People curve is 35669.2
mm long and has a bounding box that measures 592.165 mm by

487.429 mm. With such a complex input, our algorithm takes about

61 hours to generate 160 tuned points. Most of the algorithm’s time

is spent on CRO, and as the number of tuned points increases, each

subsequent CRO process may take longer. In addition, the complex

geometry and large number of bending points greatly increase the

number of CRO.

3d Shapes. Our algorithm is also applicable to 3D wires. The pri-

mary distinction between 2D and 3D wires lies in the way bending

angles are formulated. In 2D wires, each bending angle is adjusted

solely within the 2D plane. In contrast, 3D wires require the inclu-

sion of an axial angle to denote the orientation of the bending plane

relative to the horizontal plane. Consequently, each bending angle

in the 3D wires has two degrees of freedom to adjust. Therefore, the

operators for resolving collisions become somewhat more intricate

due to the consideration of the rotation of the bending head and the

collision between the wire and the bending head. In Figure 6, we

show the computational results of several 3D wires. For the Bike,

Fig. 5. Illustration of reversing the sequence of wire. After the fitting is com-
pleted, we reverse the fitted elements sequences, getting different number
of tuned points. We select less one for final fabrication.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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Fig. 6. 3D results gallery generated by our algorithm. The models are ar-
ranged in the order of Bike, Elephant, Human. Top photos are fiiting result
(line segment: Green, circular segment: Yellow), and the bottom photos are
tuned wires.

Elephant and human models [Liu et al. 2017], our algorithm takes

approximately 2.9 hours on average to produce 10 tuned points on

average.

Failure case. The algorithm may fail when there are several con-

secutive circular segments. As shown in Figure 16 (paper), the input

𝑊 ′ has two consecutive circular segments with rounded center an-

gles exceeding 𝜋 . No amount of change in the angle of the tuned

point 𝑝∗
1
can generate𝑊 ∗ while satisfying the constraints.

J EXPERIMENTAL ENVIRONMENT
We constructed a desktop-level wire-bending machine based on [De-

jan 2018]. However, due to the extensive use of 3D printed parts in

the tutorial, which are characterized by low precision and suscepti-

bility to wear, the bending machine exhibits significant errors in the

length of the wire feed and the angle of bending, reaching 30%−50%.

Therefore, we made several improvements to alleviate this problem,

the machine modified shown in Figure 4 (paper). Specifically, we

used precision machined iron parts for the straighteners, feeder,

and bending head instead of 3D printed components. Moreover,

the feeder rotates under the drive of the motor and feeds the wire

through friction, so we had performed a knurling treatment on it.

In addition, we replaced the wooden boards with aluminum plates

for the pedestal to avoid board deformation. These enhancements

significantly improved the accuracy of our machine compared to

[Dejan 2018]. The bending machine control program is implemented

using Arduino, with the Arduino MEGA2560 R3 development board

facilitating the entire bending process. Our machine is equipped

with three stepper motors: two 57 stepper motors control the feeder

feed and the z-axis bending separately, while a 42 stepper motor

governs the bending head. All motors are driven by the DM542C

driver, with a motor subdivision of 16. The stride angle of the 57

stepper motor is 1.8 °and that of the 42 stepper motor is 0.9 °. In ad-

dition, a servo controls the up and down movement of the bending

pin. The bending machine operates at a motor speed of 600 pulse

signals per second. We use a 14 mm diameter copper tube for the

main axle, and the wire used is aluminum, with a diameter of 1.5

mm and a Vickers Hardness of 20 HV.

K PHYSICAL EVALUATION OF THE BENDING.
Although we have implemented numerous enhancements to our

machine, it still exhibits several issues that result in errors during

the bending process, necessitating further consideration.

• The gravity of wire: During the bending process, the wire will
inevitably sag due to its own gravity. As the length of the bent

wire increases, the influence of gravity becomes increasingly

apparent.

• The spring-back effect of the wire: The spring-back effect of

metal materials has always been a complex problem and it is

imperative to compensate for it. A data-driven methodology

is adopted that gives the machine an input angle and mea-

sures the output angle. Subsequently, we perform a linear

interpolation and inversion on it, obtaining a mapping of

desired angles to the compensated input angles, including

the lookup table for line segments and for circular segments,

as shown in Appendix L.

• The rotation of the wire: Due to the hollow tube of the axis in

our machine, the two ends of the wire are not fixed between

the feeder and the wire outlet. When the feeder rotates to

feed the wire, the wire will unconsciously rotate, resulting in

inaccurate bending angles. For this reason, the error in the

3D shape is relatively large.

• The limitations of machine: Compared to industrial-grade

bending machines, the motor used in our machine may expe-

rience step loss, the straightener used cannot fully straighten

the wire, the number of gear teeth cannot accurately corre-

spond to each angle, and the limitation of motor drive subdi-

vision makes it difficult to precisely convert angles into steps,

etc, resulting bending errors.

We will consider machine bias in our algorithms in the future.

L LOOKUP TABLE OF MACHINE BENDING ANGLE
The spring-back effect of metal materials has always been a complex

problem in industrial production. To mitigate this issue, we adopted

a data-driven methodology to compensate for the rebound. For line

segments, we provide the machine with a command for the desired

angle 𝛼𝑑 , and after the machine bends the wire, we measure the

actual bending angle 𝛼𝑐 , as shown in Table 1. When fabricating

a circular segment using interpolated bending, the rotation angle

𝛼𝑑 of the bending pin is calculated using the radius of the desired

circular segment 𝑅𝑑 , as shown in Table 2.

For our DIY machine, the rotation of the bending pin is driven

by a motor with pulse signals 𝑃𝑆 , which rotates the bending head

via a gear mechanism. The gear tooth ratio is 1:2 and the motor

subdivision is 16, meaning the bending pin rotates 360°with 12800

motor steps. Hence, 𝑃𝑆 is equal to 𝛼𝑑 ∗ 35.5556, which is the data

input to the machine.

Finally, we perform linear interpolation and inversion on the two

table, obtaining the mapping of desired angles and radius to the

compensated input angles.
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Table 1. This table lists the line segments lookup table of the input pulse
signals 𝑃𝑆 (desired bending angles) to the compensated bending angles.
Each row indicates (The input pulse signals 𝑃𝑆), (The compensated
bending angles 𝛼𝑐 ).

𝑃𝑆 (step) 𝛼𝑐 (°) 𝑃𝑆 (step) 𝛼𝑐 (°) 𝑃𝑆 (step) 𝛼𝑐 (°)
350 1.0 1500 26.8 2700 71.3

400 2.1 1600 28.8 2800 75.2

500 3.3 1700 33.2 2900 78.0

600 4.2 1800 36.3 3000 81.5

700 5.0 1900 38.8 3100 86.2

800 7.8 2000 44.0 3200 90.0

900 8.7 2100 47.3 3300 93.4

1000 11.3 2200 49.6 3400 96.7

1100 14.2 2300 54.3 3500 100.8

1200 17.5 2400 58.8 3600 106.1

1300 20.0 2500 61.5 3700 109.9

1400 24.4 2600 64.4 3800 113.0

Table 2. This table lists the circular segments lookup table of the input
pulse signals 𝑃𝑆 (desired radius 𝑅𝑑 of circular segment) to the compensated
radius 𝑅𝑐 of circular segment. Each row indicates (The input pulse signals
𝑃𝑆), (The compensated radius 𝑅𝑐 ).

𝑃𝑆 (step) 𝑅𝑐 (mm) 𝑃𝑆 (step) 𝑅𝑐 (mm)
400 800 700 83

450 350 750 72

500 260 800 64

520 247 850 45

550 213 900 34

570 175 950 27

600 124 1000 22

650 106 1100 15

M TERMINOLOGY LIST

Table 3. This table lists all parameters used in our algorithm. Each row indi-
cates the parameter (Param), the meaning of the parameter (Significance),
and the related section where the parameter appears for the first time
(Usage).

Param Significance Usage
𝑅𝑚𝑖𝑛 the minimum radius of interpolated bending Section 3.1

𝐿𝑖𝑛 the incremental feeding distance of strike bending Section 3.1

𝐿𝑚𝑖𝑛 the distance between the bending pin and the wire

outlet, i.e. the minimum length of line segment

Section 3.1

𝛼𝑚𝑎𝑥 the maximum bending angle Section 3.1

W the input wire Section 3.2

𝑠𝑖 bending segment ofW Section 3.2

𝑝𝑖 end point of 𝑠𝑖−1 and 𝑠𝑖 , bending point ofW Section 3.2

𝛼𝑖 bending angle between 𝑠𝑖−1 and 𝑠𝑖 Section 3.2

W′
the segment-bendable wire Section 3.2

W∗
the collision-free tuned wire Section 3.2

𝑝′𝑖 end point of 𝑠′𝑖−1
and 𝑠′𝑖 , bending point ofW′

Section 3.2

𝛼 ′𝑖 bending angle ofW′
Section 3.2

𝑝∗𝑖 bending point ofW∗
Section 3.2

𝛼∗𝑖 bending angle ofW∗
Section 3.2

𝑠∗𝑖 bending segment ofW∗
Section 3.2

M wire-bending machine Section 3.2

𝑠∗
𝑖

the length of line segment 𝑠∗𝑖 Section 3.2

𝑅 (𝑠∗𝑖 ) the radius of circular segment 𝑠∗𝑖 Section 3.2

¤𝑠𝑖 a candidate fabricable segment Section 4

𝑠𝑖 a candidate fabricable line segment Section 4

𝑠𝑖 a candidate fabricable circular segment Section 4

𝐸 (𝑠 ) or

𝐸 (𝑠 )
the fitting error, the maximum Euclidean distance

from the fitted bending segment to the traversed

bending segments

Section 4

𝜖 the fitting error threshold Section 4

𝑙𝑖 the 𝑖-th candidate fabricable segment Section 4

𝑑 (𝑠 𝑗 , 𝑙𝑖 ) the fitting error distance between 𝑠 𝑗 and 𝑙𝑖 Section 4

𝜆1 a scaling coefficient of 𝑑 (𝑠 𝑗 , 𝑙𝑖 ) Section 4

𝐿 (𝑙 ) label term Section 4

𝜆2 the penalty coefficient of number of labels Section 4

𝑠′𝑖 a fitted line segment of ¤𝑠𝑖 Section 4

(𝑠′𝑖 , 𝑠′𝑖 ) two fitted segments of ¤𝑠𝑖 which ensures the G1 line

segment constraint

Section 4

𝑠′𝑖 bending segment ofW′
Section 4

𝛼̃𝑖
𝑚𝑎𝑥 the maximal feasible bending angle of 𝑝′𝑖 Section 5.1

𝛼𝑖
𝑚𝑎𝑥 the maximal feasible ranges of each bending segment

𝑠∗𝑗

Section 5.1

𝑑 the diameter of the wire tube Section 5.1

𝑣
𝑝
𝑜 the vector from 𝑝 to 𝑝𝑜 , 𝑣

𝑝
𝑜 = 𝑝 − 𝑝𝑜 Section 5.1

𝑝𝑜 the pin’s rotation center that aligns with the outlet

center

Section 5.1

𝑣𝑤𝑜 the direction vector of the wire outlet Section 5.1

𝑣
𝑝
𝑜 the length of 𝑣

𝑝
𝑜 Section 5.1

T the beam search tree Section 5.2

𝜔 the probability of setting 𝑝′𝑖 to tuned point and gen-

erating a node of T
Section 5.2

L(𝑝∗𝑗 ) the tuned score of tuned points Section 5.2

𝑊𝑏𝑒𝑎𝑚 the number of candidate solutions in a beam

search,i.e. beam width

Section 5.2
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Table 4. This table lists all the terms used in this paper. Each row indicates
the meaning of the terminology(term) and the related section where the
term used for the first time (Usage).

Term Usage
wire sculpture: the creation of sculpture out of wire. Abstract

wire-bending machine: a machine that can bend wire into dif-

ferent shapes.

Abstract

bending point: the point between different segments. Abstract

Optimal-Wire-Reconfiguration (OWR): reconfigure wire to
make it collision-free with minimal adjustments.

Abstract

line segment: straight-line segment. Abstract

circular segment: segment of a circular arc. Abstract

tuned wire: a deformed wire by tuning bending points to avoid

collision with the wire-bending machine.

Abstract

collision-free constraint: the wire does not collision with the

wire-bending machine during bending process.

Section 1

Machine-And-Then-Human-Bending: a two-stages-bending
strategy with the machine bending first, followed by human.

Section 1

machine-bending stage: the tuned wire bent by wire-bending

machine.

Section 1

human-bending stage: human bend the tuned wire to the desired

shape.

Section 1

tuned point: a bending point with tuned angle that its 𝛼∗ is not
equal to 𝛼 ′ .

Section 1

bending angle: angle of bending point. Section 1

optimal reconfiguration planning (ORP): ORP searches for

the least number of reconfiguration steps to transform between

configurations.

Section 1

bending segment: basic bending unit of wire. Section 1

fabricable bending segment: bending segment that meets man-

ufacturing constraints.

Section 1

"decompose-then-assemble" strategy: a strategy that decom-

poses the wire into a series of collision-free subwires to manufac-

ture first and then manual assembles them.

Section 2

bending pin: component used to complete bending. Section 3.1

flexion bending: a bending strategy to bend a line segment. Section 3.1

interpolated bending: a bending strategy to bend a circular

segment with the constrain 𝑅𝑚𝑖𝑛 .

Section 3.1

strike bending: a bending strategy to bend a circular segment

without the constrain 𝑅𝑚𝑖𝑛 .

Section 3.1

manufacturing constraints: minimal length constraint, bending

angle range constraint, G1 line segment constraint.

Section 3.1

bending fabricable: can be fabricated by machines. Section 3.1

segment-bendable wire: a wire whose segments are bending

fabricable.

Section 3.2

constant point: a bending point that its 𝛼∗ = 𝛼 ′ . Section 3.2

forward-and-backward traverse procedure: traverse in both

backward and forward directions.

Section 4

candidate fabricable segment: the segment gotten after forward-

and-backward traverse.

Section 4

none-overlapping fabricable segment: the segment without

overlap obtained after graph-cut.

Section 4

feasible bending angle range / feasible range: The feasible

range of 𝑝′𝑖 includes all the rotating angles of 𝛼 ′𝑖 that do not lead

to any collision between the preceding segments {𝑠∗
0
, 𝑠∗

1
, ..., 𝑠∗𝑖−1

}
of 𝑝′𝑖 and the wire-bending machine.

Section 5.1

Feasible Angle Operator (FAO): FAO is used to calculate the

feasible bending angle range.

Section 5.1

Collision Resolving Operator (CRO): CRO aims to resolve the

collisions by tuning the bending angles of tuned points.

Section 5.1

N PSEUDOCODE

N.1 Pseudocode of segment-bendable wire generation

Algorithm 1 Segment-bendable Wire Generation

Input: 𝑆 = {𝑠0, 𝑠1, ..., 𝑠𝑛 } 𝐴 = {𝛼1, 𝛼2, ..., 𝛼𝑛 } 𝑃 = {𝑝0, 𝑝1, 𝑝2, ..., 𝑝𝑛+1 }
Output: Segment-bendable wire 𝑆 ′ = {𝑠′

0
, 𝑠′

1
, ..., 𝑠′𝑚 }

Output: Bending points {𝑝′
1
, ..., 𝑝′𝑚 }

1: //Candidate fabricable segments

2: for each 𝑠𝑖 in 𝑆 do
3: //Find longest line segment 𝑠

4: while 𝑖 + 𝑘𝑓 < n and 𝑖 − 𝑘𝑓 > 0 and 𝐸𝑠𝑖 < 𝜖 do
5: LSF(i-𝑘𝑓 ,i+𝑘𝑓 ) 𝑘𝑓 ++;

6: 𝐿𝑠𝑖 = 𝑘𝑓 - 𝑘𝑏
7: //Find longest circular segment 𝑠

8: while 𝑖 + 𝑘𝑓 < n and 𝑖 − 𝑘𝑓 > 0 and 𝐸𝑠𝑖 < 𝜖 do
9: CSF(i-𝑘𝑓 ,i+𝑘𝑓 ) 𝑘𝑓 ++;

10: 𝐿𝑠𝑖 = 𝑘𝑓 - 𝑘𝑏
11: if 𝐿𝑠𝑖 < 𝐿𝑠𝑖 then ¤𝑠𝑖 is 𝑠𝑖
12: else ¤𝑠𝑖 is 𝑠𝑖
13:

14: //remove duplicated Candidate fabricable segments

15: if ¤𝑠𝑖 = ¤𝑠 𝑗 then remove ¤𝑠 𝑗
16: Get { ¤𝑠0, ¤𝑠1, ..., ¤𝑠𝑑 }
17:

18: //Graph cut for none-overlapping fabricable segments

19: { ¤𝑠0, ¤𝑠1, ..., ¤𝑠𝑘 } = Graph-cut({ ¤𝑠0, ¤𝑠1, ..., ¤𝑠𝑑 })
20:

21: //meet the manufacturing constraints

22: for each ¤𝑠𝑖 in { ¤𝑠0, ¤𝑠1, ..., ¤𝑠𝑘 } do
23: if 𝐿 ¤𝑠𝑖 < 𝐿𝑚𝑖𝑛 then
24: Merge 𝐿 ¤𝑠𝑖 with 𝐿 ¤𝑠𝑖−1

, compute 𝐸𝑏
25: Merge 𝐿 ¤𝑠𝑖 with 𝐿 ¤𝑠𝑖+1 , compute 𝐸𝑓

26: if 𝐸𝑏 < 𝐸𝑓 then Merge 𝐿 ¤𝑠𝑖 with 𝐿 ¤𝑠𝑖−1

27: else Merge 𝐿 ¤𝑠𝑖 with 𝐿 ¤𝑠𝑖+1
28: if ¤𝑠𝑖 is 𝑠𝑖 then
29: 𝐸𝑠𝑖 = 𝐿𝑆𝐹 (𝑠𝑖 ) //fitting line segment

30: 𝐸𝑠𝑖 = 𝐶𝑆𝐹𝑊𝐶 (𝑠𝑖 ) //fitting circular segment with constrains

31: if 𝐸𝑠𝑖 < 𝐸𝑠𝑖 then ¤𝑠𝑖 is 𝑠𝑖
32: else ¤𝑠𝑖 is 𝑠𝑖
33: 𝑠′𝑖 = ¤𝑠𝑖
34: return {𝑠′

0
, ..., 𝑠′𝑚 } {𝑝′1, ..., 𝑝′𝑚 }

35:

36: function Graph-cut({ ¤𝑠0, ¤𝑠1, ..., ¤𝑠𝑑 })
E =

∑︁
𝑠𝑗 ∈𝑆𝑤

𝐷 (𝑠 𝑗 , 𝑙𝑖 ) +
∑︁

(𝑠𝑗 ,𝑠 𝑗+1 ) ∈𝑆𝑤
𝑆 (𝑠 𝑗 , 𝑠 𝑗+1, 𝑙 ) + 𝐿 (𝑙 ) (4)

37: function LSF(𝑎,𝑏)

38: 𝑙𝑖𝑛𝑒 (𝑎,𝑏 + 1) is connecting 𝑝𝑎 and 𝑝𝑏 + 1

39: for j in (a,b) do
40: 𝐸𝑠𝑖 =maxEuclidean distance of 𝑝𝑖 to 𝑙𝑖𝑛𝑒 (𝑎,𝑏 )
41: function CSF(𝑎,𝑏)

42: fitting a plane using {𝑝𝑎, 𝑝𝑎+1, ..., 𝑝𝑏+1 }
43: using least squares fitting to find 𝑐𝑖𝑟 (𝑎,𝑏 )
44: 𝑐𝑖𝑟 (𝑎,𝑏 ) is a circular that 𝑝𝑎 and 𝑝𝑏 + 1 are the two ends.

45: for j in (a,b) do
46: 𝐸𝑠𝑖 =maxEuclidean distance of 𝑝𝑖 to 𝑐𝑖𝑟 (𝑎,𝑏 )
47: function CSFWC(𝑎,𝑏)

48: fitting a plane using {𝑝𝑎, 𝑝𝑎+1, ..., 𝑝𝑏+1 }
49: using least squares fitting to find (𝑠′𝑖 , 𝑠′𝑖 )
50: (𝑠′𝑖 , 𝑠′𝑖 ) are a line segment following a G1 continuous circular segment.

51: for j in (a,b) do
52: 𝐸𝑠𝑖 =maxEuclidean distance of 𝑝𝑖 to (𝑠′𝑖 , 𝑠′𝑖 )
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N.2 Pseudocode of CRO

Algorithm 2 Collision Resolving Operator

Input: 𝑆∗ = {𝑠∗
0
, 𝑠∗

1
, ..., 𝑠∗

𝑖
}

Input: 𝐴∗ = {𝛼∗
1
, 𝛼∗

2
, ..., 𝛼∗

𝑖+1}
Input: 𝑃∗ = {𝑝∗

1
, 𝑝∗

2
, ..., 𝑝∗

𝑖+1}
Output: Angles with collision-free 𝐴̂∗ = {𝛼∗

1
, 𝛼∗

2
, ..., 𝛼∗

𝑖+1}
1:

2: function cro(𝑆∗, 𝐴∗, 𝑃∗)
3: // number of tuned points

4: 𝑛𝑡 ← 0

5: // set of tuned points; initialize 𝐴̂∗

6: 𝑃𝑡 ← ∅; 𝐴̂∗ ← ∅
7: for each 𝑝∗

𝑖
in 𝑃∗ do

8: if 𝑝∗
𝑖
is tuned point then

9: 𝑃𝑡 ∪ {𝑝∗𝑖 }
10: 𝑛𝑡+ = 1

11: for int 𝑑 ← 1; 𝑑 ≤ 𝑛𝑡 ; 𝑑++ do
12: 𝐴̂∗ ← 𝐴∗

13: // tune a subset of 𝐴∗, 𝑑 is the size of the subset

14: return sub_cro(𝑑, 𝑆∗, 𝐴̂∗, 𝑃𝑡 )
15: return ∅
16:

17: function sub_cro(𝑑𝑒𝑝𝑡ℎ, 𝑆∗, 𝐴̂∗, 𝑃𝑡 )
18: if 𝑑 = 1 then
19: for each 𝑝∗

𝑖
in 𝑃𝑡 do

20: for 𝛼𝑡 ← 1 ; 𝛼𝑡 ≤ 𝛼𝑚𝑎𝑥 ; 𝛼𝑡++ do
21: 𝛼∗

𝑖
+= 𝛼𝑡

22: if check_collision_free(𝑆∗, 𝐴̂∗, 𝑃𝑡 ) then
23: return 𝐴̂∗

24: 𝛼∗
𝑖
-= 2 * 𝛼𝑡

25: if check_collision_free(𝑆∗, 𝐴̂∗, 𝑃𝑡 ) then
26: return 𝐴̂∗

27: return ∅
28: else
29: for each 𝑝∗

𝑖
in 𝑃𝑡 do

30: for 𝛼𝑡 ← 1 ; 𝛼𝑡 ≤ 𝛼𝑚𝑎𝑥 ; 𝛼𝑡++ do
31: 𝛼∗

𝑖
+= 𝛼𝑡

32: 𝑃𝑡 ← 𝑃𝑡 − {𝑝∗𝑖 }
33: if sub_cro(𝑑𝑒𝑝𝑡ℎ − 1, 𝑆∗, 𝐴̂∗, 𝑃𝑡 ) ≠ ∅ then
34: return 𝐴̂∗

35: 𝛼∗
𝑖
-= 2 * 𝛼𝑡

36: if sub_cro(𝑑𝑒𝑝𝑡ℎ − 1, 𝑆∗, 𝐴̂∗, 𝑃𝑡 ) ≠ ∅ then
37: return 𝐴̂∗

38: return ∅

N.3 Pseudocode of Beam search

Algorithm 3 Beam Search

Input: 𝑆 ′ = {𝑠′
0
, 𝑠′

1
, ..., 𝑠′𝑚 };𝐴′ = {𝛼 ′1, 𝛼 ′2, ..., 𝛼 ′𝑚 }; 𝑃 ′ = {𝑝′1, 𝑝′2, ..., 𝑝′𝑚 }; L′

= {L′
1
, L′

2
, ..., L′𝑚 }; The beam search width𝑊𝑏 ;

Output: Angles with collision-free 𝐴̂∗ = {𝛼∗
1
, 𝛼∗

2
, ..., 𝛼∗𝑚 }

1: A nodes vector𝐶 of the current depth of beam search

2: A nodes vector 𝐵 of the previous depth of beam search

3: P← ∅;C← ∅; 𝐴̂∗ ← ∅
4: 𝑆∗ ← 𝑠′

0
;𝐴∗ ← ∅;𝑃∗ ← ∅;

5: if check_collision_free(𝑆∗, 𝐴∗, 𝑃∗) then
6: node 𝑛 ← {𝑆∗, 𝐴∗, 𝑃∗}
7: P← P ∪ 𝑛
8: else
9: return ∅
10: 𝑖 ← 1 //iteration of beam search, the height of search tree

11: while P ≠ ∅ do
12: for each node 𝑛 of P do
13: get 𝑆∗, 𝐴∗, 𝑃∗ of 𝑛;
14: 𝑆∗ ← 𝑆∗ ∪ 𝑠′

𝑖
, 𝐴∗ ∪ 𝛼 ′

𝑖
, 𝑃∗𝑡𝑒𝑚𝑝 ← 𝑃∗

15: if check_collision_free(𝑆∗, 𝐴∗, 𝑃∗) then
16: 𝜔 ← 𝑟𝑎𝑛𝑑 ( )𝑚𝑜𝑑100 ÷ 100

17: if probability 𝜔 < 0.3 then
18: //tuned point situation

19: set 𝑝∗
𝑖
as possible tuned point;

20: 𝑃∗𝑡𝑒𝑚𝑝 ← 𝑃∗𝑡𝑒𝑚𝑝 ∪ 𝑝∗𝑖
21: node 𝑛′ ← {𝑆∗, 𝐴∗, 𝑃∗𝑡𝑒𝑚𝑝 }
22: C← P ∪ 𝑛′
23: //constant point situation

24: set 𝑝∗
𝑖
as constant point;

25: 𝑃∗𝑡𝑒𝑚𝑝 ← 𝑃∗𝑡𝑒𝑚𝑝 ∪ 𝑝∗𝑖
26: node 𝑛′ ← {𝑆∗, 𝐴∗, 𝑃∗𝑡𝑒𝑚𝑝 }
27: C← P ∪ 𝑛′
28: else
29: 𝐴∗𝑡𝑒𝑚𝑝 ← ∅
30: //tuned point situation

31: set 𝑝∗
𝑖
as tuned point;

32: 𝑃∗𝑡𝑒𝑚𝑝 ← 𝑃∗𝑡𝑒𝑚𝑝 ∪ 𝑝∗𝑖
33: 𝐴∗𝑡𝑒𝑚𝑝 ← CRO (𝑆∗, 𝐴∗, 𝑃∗ )
34: if 𝐴∗ ≠ ∅ then
35: node 𝑛′ ← {𝑆∗, 𝐴∗𝑡𝑒𝑚𝑝 , 𝑃

∗
𝑡𝑒𝑚𝑝 }

36: C← P ∪ 𝑛′
37: //constant point situation

38: set 𝑝∗
𝑖
as constant point;

39: 𝑃∗𝑡𝑒𝑚𝑝 ← 𝑃∗𝑡𝑒𝑚𝑝 ∪ 𝑝∗𝑖
40: 𝐴∗𝑡𝑒𝑚𝑝 ← CRO (𝑆∗, 𝐴∗, 𝑃∗ )
41: if 𝐴∗ ≠ ∅ then
42: node 𝑛′ ← {𝑆∗, 𝐴∗𝑡𝑒𝑚𝑝 , 𝑃

∗
𝑡𝑒𝑚𝑝 }

43: C← P ∪ 𝑛′
44: if C = ∅ then
45: return ∅
46: for each node 𝑛 of C do
47: scoring and sorting C

48: P← the first𝑊𝑏 nodes of C,C← ∅
49: 𝑖 ← 𝑖 + 1

50: if i = m then
51: 𝐴̂∗ ← the first 𝐴∗ of node of P
52: return 𝐴̂∗
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O DISCUSSION ON BEAM SEARCH
Our beam search algorithm is not exhaustive but guarantees finding

a feasible solution. Beam search prunes many paths and only keeps a

limited number of best paths at each level, making it non-exhaustive,

which makes it significantly faster than exhaustive search algo-

rithms. We employ beam search to discover solutions with the mini-

mal number of tuned points. By adjusting the beamwidth, we aim to

approach the optimal solution, although we cannot guarantee that

it is optimal. When beam search fails to find a solution (Figure 16 in

paper), we restart fitting and searching with smaller segments to en-

sure eventual discovery of a solution. Splitting the circular segments

of Figure 16 into shorter segments results in more points becom-

ing tuned point candidates. In the worst-case scenario, all points

are tuned points, indicating segments fully bent by human hands.

Therefore, our algorithm guarantees finding a feasible solution.

P MULTI-VIEW EXAMPLE TEST
Multi-view wire art can be interpreted in various ways depending

on the viewer’s perspective. Previous works, [Hsiao et al. 2018] and

[Tojo et al. 2024], can generate multi-viewwires with high geometric

complexity and artistic appeal. We tested five examples, and the

results demonstrate that our algorithm effectively addresses the

challenges of multi-view wire manufacturing, as shown in Figure 7.

Q COMPLEX RESULTS
We conducted experiments on thirteen more complex 2D shapes,

characterized by increased self-intersections and an enhanced artis-

tic quality, typically achievable only through the artist’s skill. The

results demonstrate that our algorithm can effectively handle these

intricate forms, as shown in Figure 8.
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Fig. 7. Results of multi-view wire arts generated by [Tojo et al. 2024]. Top-left: View 1. Top-right: View 2. Bottom: tuned wire. The models are arranged in the
order of Cat-dog, Einstein-Newton, Elephant-giraffe, Bull-horse, Tree-flower.

Fig. 8. Thirteen results of 2d wire art examples. The models are arranged in the order of Man, Runner, Hat woman, Side face woman, Writing, Game player, Tree,
Car, Guitar, Flower, Cake,World map, Rabbit. We show both the fitting result (line segment: Green, circular segment: Yellow) and the tuned wire.
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